A Spectral Algorithm for Latent Junction Trees
نویسندگان
چکیده
Latent variable models are an elegant framework for capturing rich probabilistic dependencies in many applications. However, current approaches typically parametrize these models using conditional probability tables, and learning relies predominantly on local search heuristics such as Expectation Maximization. Using tensor algebra, we propose an alternative parameterization of latent variable models (where the model structures are junction trees) that still allows for computation of marginals among observed variables. While this novel representation leads to a moderate increase in the number of parameters for junction trees of low treewidth, it lets us design a local-minimum-free algorithm for learning this parameterization. The main computation of the algorithm involves only tensor operations and SVDs which can be orders of magnitude faster than EM algorithms for large datasets. To our knowledge, this is the first provably consistent parameter learning technique for a large class of low-treewidth latent graphical models beyond trees. We demonstrate the advantages of our method on synthetic and real datasets.
منابع مشابه
Spectral Probabilistic Modeling and Applications to Natural Language Processing
Probabilistic modeling with latent variables is a powerful paradigm that has led to key advances in many applications such natural language processing, text mining, and computational biology. Unfortunately, while introducing latent variables substantially increases representation power, learning and modeling can become considerably more complicated. Most existing solutions largely ignore non-id...
متن کاملSpectral Unsupervised Parsing with Additive Tree Metrics
We propose a spectral approach for unsupervised constituent parsing that comes with theoretical guarantees on latent structure recovery. Our approach is grammarless – we directly learn the bracketing structure of a given sentence without using a grammar model. The main algorithm is based on lifting the concept of additive tree metrics for structure learning of latent trees in the phylogenetic a...
متن کاملTensor Decomposition for Fast Parsing with Latent-Variable PCFGs
We describe an approach to speed-up inference with latent-variable PCFGs, which have been shown to be highly effective for natural language parsing. Our approach is based on a tensor formulation recently introduced for spectral estimation of latent-variable PCFGs coupled with a tensor decomposition algorithm well-known in the multilinear algebra literature. We also describe an error bound for t...
متن کاملLearning Sum-Product Networks with Direct and Indirect Variable Interactions
Sum-product networks (SPNs) are a deep probabilistic representation that allows for efficient, exact inference. SPNs generalize many other tractable models, including thin junction trees, latent tree models, and many types of mixtures. Previous work on learning SPN structure has mainly focused on using top-down or bottom-up clustering to find mixtures, which capture variable interactions indire...
متن کاملLearning General Latent-Variable Graphical Models with Predictive Belief Propagation and Hilbert Space Embeddings
In this paper, we propose a new algorithm for learning general latent-variable probabilistic graphical models using the techniques of predictive state representation, instrumental variable regression, and reproducing-kernel Hilbert space embeddings of distributions. Under this new learning framework, we first convert latent-variable graphical models into corresponding latent-variable junction t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012